Schizophrenia phenomenology comprises a bifactorial general severity and a single-group factor, which are differently associated with neurotoxic immune and immune-regulatory pathways

In schizophrenia, a single latent trait underlies psychosis, hostility, excitation, mannerism, negative (PHEMN) symptoms, formal thought disorders (FTD) and psychomotor retardation (PMR). Schizophrenia is accompanied by a breakdown of gut and blood-brain-barrier (BBB) pathways, increased tryptophan catabolite (TRYCAT) levels, bacterial translocation, and lowered natural IgM and paraoxonase (PON)1 activity. The aim of this study was to examine the factor structure of schizophrenia symptom domains and the biomarker correlates of these factors. We recruited 80 patients with schizophrenia and 40 healthy subjects and assessed the IgA/IgM responses to paracellular/transcellular (PARA/TRANS) ratios, IgA responses to TRYCATs, natural IgM to malondialdehyde and Gram-negative bacteria, and PON1 enzymatic activity. Direct Hierarchical Exploratory Factor Analysis showed a bifactorial oblique model with a) a general factor which loaded highly on all symptom domains, named overall severity of schizophrenia (“OSOS”); and b) a single-group factor (SGF) loading on negative symptoms and PMR. We found that 40% of the variance in OSOS score was explained by IgA/IgM to PARA/TRANS ratio, male sex and education while 36.9% of the variance in SGF score was explained by IgA to PARA/TRANS, IgM to Gram-negative bacteria, female sex (positively associated) and IgM to MDA, and PON1 activity (negatively associated). Schizophrenia phenomenology comprises two biologically-validated dimensions, namely a general OSOS dimension and a single-group negative symptom dimension, which are associated with a breakdown of gut/BBB barriers, increased bacterial translocation and lowered protection against oxidation, inflammation and bacterial infections through lowered PON1 and natural IgM.

Related Posts